Перейти к основному содержанию
Реклама
Прямой эфир
Экономика
Курс доллара впервые с 30 октября 2023 года поднялся выше 94 рублей
Мир
В NASA подтвердили падение мусора с МКС на крышу дома во Флориде
Экономика
В России самозанятые поставили госкомпаниям товаров и услуг на 2 млрд рублей
Общество
Собянин сообщил о завершении строительства двух новых корпусов МГТУ имени Баумана
Мир
Пентагон указал на «серьезную угрозу» дронов и ракет Ирана
Общество
Уровень воды в реке Тобол у Кургана за сутки поднялся на 111 см
Общество
В Донецке задержали руководителя промышленного объекта за дачу взятки
Общество
Стало известно, как часто для повышения на работе требуется высшее образование
Армия
Военкор «Известий» показал работу экипажа РСЗО «Град» на южнодонецком направлении
Происшествия
Жителей тюменского Ишима призвали эвакуироваться из-за критического подъема воды
Общество
Юрист рассказал о выводе средств коррумпированных чиновников через недвижимость
Общество
Апелляционный военный суд получил жалобы и представление на приговор Дарье Треповой
Мир
Байден и его супруга раскрыли свои доходы за 2023 год
Спорт
Россиянка Вероника Кудерметова вышла во второй круг турнира в Штутгарте
Происшествия
В тюменском селе Ильинка уровень воды в реке Ишим превысил критическое значение
Армия
Расчеты РСЗО «Ураган» ночью уничтожили позиции ВСУ на приграничной территории
Главный слайд
Начало статьи
Озвучить текст
Выделить главное
вкл
выкл

Нобелевской премии по химии в 2019 году удостоились ученые, внесшие основной вклад в разработку литий-ионных батарей, использование которых помогло создать компактные телефоны, ноутбуки и электромобили. Главный научный приз был разделен между первооткрывателем этих аккумуляторов британским химиком Стэнли Уиттингемом, развившим его идеи американским физиком Джоном Гуденафом и японским химиком Акирой Йошино, который создал первый промышленный образец нового устройства и запустил его массовое производство. Таким образом, сегодня каждый человек на земле, использующий мобильный телефон, держит в руках открытие нобелиатов-2019.

Три столпа нобелевки

В 70-е годы прошлого века выбор аккумуляторов был крайне узок — львиную долю рынка занимали практически безальтернативные свинцовые системы, различные вариации которых на тот момент использовались уже порядка 150 лет. Однако они были крайне тяжелыми и не давали возможности для развития портативной электроники. Именно поэтому первые образцы мобильных телефонов оказались очень крупными и продавались в комплекте с набором тяжелых элементов питания, каждый из которых обеспечивал лишь несколько часов работы аппарата.

В таких условиях разработка легких и емких батарей стала одной из важнейших задач, решение которой началось с открытия англичанина Майкла Стэнли Уиттингема, создавшего первый в мире заряжаемый аккумулятор на основе лития. Однако первоначальный образец батареи был далек от совершенства и требовал появления новых материалов, которые улучшили бы ее электрические характеристики.

Стэнли Уиттингем, лауреат Нобелевской премии по химии 2019 года

Стэнли Уиттингем, лауреат Нобелевской премии по химии 2019 года

Фото: REUTERS/Andreas Gebert

Сделать это позволили исследования американского ученого Джона Гуденафа.

— Он приспособил для применения в аккумуляторах катоды на основе весьма неожиданного для ученых того времени материала — литий-железо-фосфата, который в обычных условиях обладает очень плохой ионной и электронной проводимостью, — рассказал директор Центра компетенций «Новые мобильные источники энергии» ИПХФ РАН Юрий Добровольский. — Гуденаф доказал, что этот материал способен быть отличным проводником, если использовать его в виде наночастиц, которые будут обладать необходимыми характеристиками не за счет своего объема (что подразумевали традиционные подходы того времени), а исходя из большой площади поверхности, которая дополнительно покрывалась тонким слоем углерода.

В результате ученым удалось получить новые аккумуляторы, которые втрое превосходили аналоги по электрической емкости на килограмм веса. Однако, добившись высоких характеристик, исследователи столкнулись с опасностью возгорания батареи, основной причиной которого было использование взрывоопасного металлического лития в качестве отрицательного электрода (анода). Этот материал часто вызывал короткие замыкания, которые приводили к разрушению устройств. Решением проблемы стало изобретение углеродных электродов с внедренными в них ионами металлического лития, которые уже не представляли опасности. В результате батареи превратились в литий-ионные и стали пригодны для внедрения в промышленность.

Джон Б. Гуденоф, лауреат Нобелевской премии по химии 2019 года, во время пресс-конференции в Королевском обществе в Лондоне

Джон Б. Гуденоф, лауреат Нобелевской премии по химии 2019 года, во время пресс-конференции в Королевском обществе в Лондоне

Фото: REUTERS/Peter Nicholls

Добиться этого удалось Акире Йошино, создавшему первую полноценную литий-ионную батарею на основе кобальтата лития. Она обладала высокой плотностью энергии при относительно малой мощности и низкой скорости зарядки и разрядки, которых хватало для применения в радиоэлектронике и мобильных телефонах. Йошино запустил и массовый выпуск этих аккумуляторов, который начался в 1986 году.

— Путь от предложения Гуденафом кобальтата лития в качестве материала для катода до создания первого промышленного образца батареи был пройден всего за пять лет. Это можно считать рекордной скоростью внедрения идей высокой науки в практику, — считает руководитель группы материалов для литий-ионных аккумуляторов Института химии твердого тела и механохимии СО РАН Нина Косова.

Тягловая батарейка

Впоследствии возникла и необходимость создания более мощных батарей для электродвигателей (в том числе автомобильных), что повлекло внедрение в них альтернативных материалов.

— Решить эту задачу получилось с помощью железо-фосфатных материалов, которые способны быстро впитывать и отдавать энергию. Это необходимо, например, для интенсивного разгона автомобиля и быстрого накопления энергии с помощью системы ее рекуперации, которая включается при торможении, — отметил приглашенный эксперт Кафедры физической химии НИТУ «МИСиС» Алексей Юдин. — Если же говорить про аккумуляторы для мобильных устройств, здесь кобальтат лития впоследствии заменили материалы на основе Li-NMC (Lithium Nickel Manganese Cobalt — катод, который содержит сочетание оксидов лития никеля и марганца. — «Известия»). Они более безопасны — не приводят к возгоранию — и позволяют быстро заряжать телефоны и компьютеры.

По словам экспертов, развитие технологии позволило не только расширить ее применяемость — оно положительно сказалось и на количестве энергии, которую возможно «спрятать» в аккумулятор. Если в конце 1990-х емкость стандартной батарейки составляла около 100 Ватт в час на килограмм, то сейчас этот показатель увеличился как минимум в 2,5 раза.

Зарядка электромобиля

Зарядка электромобиля

Фото: ТАСС/Александр Щербак

Среди основных перспективных областей применения литий-ионных батарей эксперты называют автопром (причем это касается и создания электромобилей, и выпуска гибридных моделей), накопители энергии (пауэрбанки), аккумуляторы для авиационной и космической техники, а также электрические велосипеды и самокаты. Кроме того, разработка используется в системах накопления энергии из возобновляемых источников (в частности, от солнечных батарей и ветрогенераторов), робототехнике, медицинских имплантах, охранных и военных системах.

— Любопытно, что в качестве дальнейшего развития технологии ученые видят уход от металла, давшего названия новым батареям (лития), и переход на натрий-ионные и калий-ионные устройства. Стоимость необходимых для них элементов в разы ниже, — отметил профессор Сколковского университета науки и технологий Артем Абакумов.

Акира Йошино, лауреат Нобелевской премии по химии 2019 года, держит макет литий-ионного аккумулятора во время пресс-конференции в Токио

Акира Йошино, лауреат Нобелевской премии по химии 2019 года, держит макет литий-ионного аккумулятора во время пресс-конференции в Токио

Фото: REUTERS/Issei Kato

При этом в передовых устройствах будут использоваться те же научные принципы, которые были открыты и развиты нобелевскими лауреатами. К слову, каждый из них тоже демонстрирует удивительные качества научного долгожительства.

Перезаряжаемые ученые

Например, 97-летний Джон Гуденаф, родившийся в Германии еще до прихода к власти Гитлера и переехавший с родителями в США, на сегодняшний день является старейшим нобелиатом на протяжении всей истории премии.

Он знаменит не только высказыванием: «У меня еще есть время на открытия. Мне всего лишь 92», но и своим смехом, который явно стоит услышать. Для этого нужно просто набрать в поисковике «Джон Гуденаф. Смеяться».

Несмотря на то что в детстве и юности Гуденаф не проявлял интереса к науке, его путь в итоге прошел через Чикагский университет и обучение у Энрико Ферми. В свои 97 профессор каждый день ходит на работу в свою лабораторию в Техасе. Сейчас, по информации газеты The Guardian, он находится в Лондоне и готовится отпраздновать премию.

Нобель

— Я не знал, что инженеры-электрики будут делать с созданной мною батареей. Я действительно не ожидал нашествия мобильных телефонов, видеокамер и всего остального, — сказал он в недавнем интервью The Times.

77-летний Стенли Уиттингем, по информации АР, после присуждения премии заявил, что теперь ему нужно поблагодарить так много людей, что он не знает, с кого начать. Профессор живет в Нью-Йорке, но на этой неделе, как и его коллега, находится в Европе на конференции.

А вот до 71-летнего Акиры Йошино удалось дозвониться прямо во время стокгольмской пресс-конференции. Он был очень удивлен, но сказал, что был уверен: за литий-ионные батареи когда-нибудь присудят Нобелевскую премию. Однако никогда не думал, что это будет так скоро: «Сюрприз, сюрприз!»

Подводя итог, можно сказать, что, создав перезаряжаемые устройства, нобелиаты открыли новый источник энергии и для своей жизни.

Прямой эфир