Перейти к основному содержанию
Прямой эфир
Главный слайд
Начало статьи
На всех квантит: усовершенствована технология связи по оптоволокну
2019-10-31 19:23:05">
2019-10-31 19:23:05
Озвучить текст
Выделить главное
вкл
выкл

Команда российских и американских исследователей создала прототип самого яркого в мире источника одиночных фотонов. Новое устройство для передачи сведений, зашифрованных с помощью квантовых технологий, позволит в два раза увеличить расстояние для быстрого и безопасного обмена информацией. Прибор работает при комнатной температуре и совместим с чипами для модулей систем квантовых коммуникаций, что позволит уменьшить размеры необходимого оборудования. В перспективе, если ученым удастся добиться высокой скорости передачи фотонов, можно будет говорить о создании сверхбезопасного «квантового интернета».

Квантовые потери

Фундаментальные законы квантовой механики сегодня используют как в вычислительных устройствах (компьютерах), так и для передачи информации. Осуществить обмен данными можно двумя способами: по воздуху и оптоволокну. Но если первый метод требует наличия спутников, то для второго — достаточно проложить нить из оптоволокна между источником и приемником сообщения или документа.

Такие технологии уже более десяти лет используют для обмена секретными сообщениями. Но один из основных недостатков метода — слишком малое расстояние передачи данных, которое ограничивается потерями в оптоволокне. Для существующих сетей при квантовой трансляции расстояние обычно не превышает 100–150 км.

Лаборатория НОЦ ФМН
Фото: НОЦ ФМН

Суть в том, что квантово-закодированную информацию пересылают с помощью одиночных фотонов, для генерации которых используют особые устройства. Основная проблема современных применяемых приборов заключается в низкой интенсивности излучения одиночных фотонов. По мере распространения элементарных частиц из-за оптических потерь в линии связи их количество уменьшается, что делает дальнейшую передачу фотонов в их оригинальном состоянии невозможной. В итоге квантовый канал может пересылать очень небольшое количество данных в единицу времени. Для увеличения расстояния требуются однофотонные источники, обладающие ультравысокой интенсивностью излучения, то есть способные генерировать большее количество элементарных частиц в секунду, чем сейчас.

Команда ученых совместного научно-образовательного центра «Функциональные Микро/Наносистемы» (НОЦ ФМН МГТУ им. Н.Э. Баумана и ФГУП «ВНИИА им. Н.Л. Духова») и университета Пардью (США) разработала самый яркий в мире источник одиночных фотонов. Прототип устройства показал возможность повышения скорости излучения до рекордного показателя — 35 млн фотонов в секунду при комнатной температуре. Что позволит более чем в два раза увеличить расстояние квантовой трансляции данных, доведя его до 200–300 км. Принцип действия устройства основан на испускании одиночных фотонов наноалмазом с внедренным атомом азота.

Лаборатория НОЦ ФМН
Фото: НОЦ ФМН

Благодаря разработанной нами технологии синтеза материалов с рекордно низкими оптическими (фотонными) потерями удалось создать так называемую плазмонную антенну с повышенной эффективностью излучения, — рассказал директор НОЦ ФМН Илья Родионов. — Наше решение позволило в 10 раз увеличить количество испускаемых системой фотонов в секунду. Размеры устройства не превышают ста нанометров, что дает возможность разместить его прямо на чипе модулей систем квантовых коммуникаций и квантовой обработки информации данных. Важно, что работает излучатель при комнатной температуре и не требует дополнительного оборудования для охлаждения.

Физика против хакеров

Возможность размещения созданного устройства на чипе позволит уменьшить размеры систем квантовых коммуникаций по сравнению с используемыми сегодня технологиями. Более того, разработанный излучатель одиночных фотонов на чипе может стать одной из ключевых составляющих систем оптических квантовых вычислений.

— Нельзя сказать, что этот конкретный прибор произведет революцию в квантовых коммуникациях. Во-первых, у него специфическая длина волны, ограничивающая область его применения, во-вторых, скромный параметр качества одиночных фотонов, — отметил ведущий научный сотрудник Центра квантовых технологий физического факультета МГУ им. М.В. Ломоносова Константин Кравцов. — Однако сам факт развития данного направления в будущем, безусловно, приведет к улучшению характеристик и повышению доступности практических систем квантовой коммуникации и квантовых вычислений.

Лаборатория НОЦ ФМН
Фото: НОЦ ФМН

В перспективе высокая скорость передачи данных может привести к реализации сверхбезопасного «квантового интернета». Речь идет о сети коммуникаций, в которых обмен информацией между устройствами будет защищена с применением одиночных фотонов.

— Независимо от того, насколько продвинутым будет хакер, несанкционированное вмешательство в квантовые каналы связи не останется незамеченным в силу законов физики. Дело в том, что на квантовом уровне свет и материя очень чувствительны к вмешательствам извне, — подчеркнул научный сотрудник университета Пардью Семен Богданов.

Любые хранилища данных — от аккаунтов в соцсетях до файлов государственной важности — защитят законы физики. Если шифр можно взломать, то фотон — никогда.

В настоящий момент команда ученых работает над интеграцией разработанного типа источников в чипы для модулей систем квантовых коммуникаций и вычислений.