Перейти к основному содержанию
Реклама
Прямой эфир
Общество
Две трети россиян поддержали запрет на продажу алкоголя до 21 года
Общество
РФ работает над возвращением оставленной в туалете аэропорта Антальи девочки
Армия
Минобороны показало кадры ударов FPV-дронов по бронетехнике ВСУ
Происшествия
В Екатеринбурге загорелось здание автосервиса на площади 1 тыс. кв. м
Происшествия
В Алтайском крае произошел пожар в производственном здании на площади 280 кв. м
Происшествия
В Бурятии семь человек пострадали в ДТП с микроавтобусом
Армия
Военнослужащие группировки войск «Центр» рассказали о работе расчета ЗРК «Бук-М2»
Спорт
Форвард «Чикаго» Илья Михеев набрал три очка в матче НХЛ против «Сент-Луиса»
Общество
В Пулково сняли временные ограничения на прием и выпуск воздушных судов
Общество
В аэропорту Нижнего Новгорода сняли временные ограничения на прием и выпуск рейсов
Армия
Экипажи Ка-52 нанесли удары по позициям ВСУ в приграничье Курской области
Армия
Расчеты дронов ВДВ уничтожили скопление живой силы ВСУ в зоне спецоперации
Армия
Силы ПВО уничтожили украинский беспилотник над Ленинградской областью
Мир
Из Банка Англии изъяли тысячи золотых слитков из-за опасений пошлин
Общество
Губернатор Лимаренко заявил о невозможности приблизиться к севшему на мель судну
Общество
В СПЧ объяснили необходимость защиты от украинских мошенников со стороны государства
Мир
Трамп сообщил о прошедшем телефонном разговоре с Путиным
Главный слайд
Начало статьи
Озвучить текст
Выделить главное
Вкл
Выкл

Российские специалисты разработали алгоритм и устройство для автоматического управления экскаваторами при добыче полезных ископаемых. Обработка данных производится с помощью нейронных сетей, которые были обучены на разных типах машин и карьеров. Опытная эксплуатация подтвердила перспективность изобретения. Оно запатентовано и готово к запуску в производство. Профессиональные участники горнодобывающей отрасли считают, что разработка уральских ученых может стать важным этапом на пути к автоматизации экскаваторов.

Настройки сети

Ученые из Уральского горного государственного университета создали программный модуль, который поможет увеличить производительность карьерных экскаваторов. Новый способ основан на оптимизации движения ковша. В основе методики — применение нейросетевых принципов и автоматизация управления техникой.

Нейронная сеть — это программа, которая использует полученные данные для собственного обучения. Такой искусственный интеллект (ИИ) позволяет анализировать большие объемы информации за короткое время. Уральские специалисты применили нейросети для определения точного положения ковша экскаватора и описания среды, в которой он работает. Аппаратная часть комплекса состоит из двух видеокамер, установленных на кабине экскаватора, и вычислительного устройства. Камеры объединены в стереопару и откалиброваны, чтобы получать трехмерную картину производственного процесса. Настройка камер производилась с использованием лазерных дальномеров.

действие
Фото: ИЗВЕСТИЯ/Константин Кокошкин

Мы обучаем нейросеть, чтобы она могла распознать в видеопотоке ковш и другие объекты. С учетом полученной информации и встроенного алгоритма программа формирует эффективную траекторию перемещения рабочего инструмента и отдает команды приводам управления экскаватора, — объяснила «Известиям» принцип разработки руководитель проекта, старший преподаватель кафедры информатики УГГУ, кандидат технических наук Евгения Волкова.

Специалист добавила, что самые энергозатратные операции — разгон и торможение ковша, поэтому эффективная траектория стремится к наиболее короткому пути между точкой окончания черпания и зоной разгрузки. При этом нужно учитывать, что эти пункты каждый раз изменяются и поэтому их нужно пересчитывать в реальном времени.

Расчеты ученых показывают, что внедрение новой методики может повысить производительность машин от 3 до 10%.

Сделать лучше

Новые технологии, такие как нейросети, ИИ, машинное зрение, распознавание образов и обработка массивов данных, стали важным подспорьем для решения задачи по увеличению эффективности карьерных экскаваторов, считает профессор кафедры автоматики и компьютерных технологий УГГУ Александр Бабенко. По мнению эксперта, технические новшества позволили специалистам в реальном времени определять координаты ковша и выстраивать объемную математическую модель его окружения, что раньше прежними классическими инструментами сделать было невозможно.

сеть
Фото: ТАСС/Николай Тришин

Алгоритм представляет собой ансамбль нейронных сетей. На основе одной из них реализованы механизмы стереозрения и оценки расстояния до объектов. Другая программа отвечает за координаты и электрические параметры главных приводов. Третья определяет текущую технологическую операцию (черпание, перенос груженого или порожнего ковша, разгрузка). Далее ИИ определяет оптимальную точку разгрузки и траекторию движения к ней, — рассказала Евгения Волкова.

Карьерный экскаватор — сложный технический объект, который включает в себя множество механических и электрических подсистем. В алгоритме, предложенном уральскими специалистами, рассмотрены разные параметры эффективности.

— Для качественного обучения моделей сбор данных проводился в разное время года — зимой и летом, на асбестовом и угольном разрезах. Также использовались экскаваторы разных типов, что подтверждает универсальность нашей разработки, — поделилась Евгения Волкова.

Программный комплекс ученые разрабатывали в сотрудничестве с горнодобывающими предприятиями. Это обеспечило обратную связь и возможность доработки алгоритмов под непосредственные задачи.

Будущее не за горами

Профессиональные участники горнодобывающей отрасли считают, что разработка уральских ученых может стать важным этапом на пути к автоматизации экскаваторов. В частности, такую точку зрения выразил заведующий кафедрой автоматических систем Российского технологического университета МИРЭА Алексей Лютов.

человек
Фото: ТАСС/Сергей Бобылев

— Важно с помощью современных интеллектуальных технологий решать задачи автоматизации на новом уровне, освобождая человека-оператора от тяжелых, опасных, рутинных работ. Одновременно нужно повышать энергоэффективность и экологичность технологических процессов, — подчеркнул он.

Перспективы решения этих задач, по мнению Алексея Лютова, в применении беспилотных средств погрузки и транспортировки породы.

Построение безлюдных горных предприятий, на которых машины работают на дистанционном управлении или автономно, — это мировой тренд. Причем опыт показывает, что траектории и способы работы, которые генерирует компьютер, в большинстве случаев эффективнее, чем те, которые применяет человек. Разработка, сделанная в Уральском горном университете, — значимый шаг в этом направлении, — прокомментировал Александр Бабенко.

Работа по развитию программного модуля продолжается в рамках стратегического проекта УГГУ «Цифровые производственные технологии», входящего в программу Министерства образования и науки «Приоритет-2030».

По словам ученых, при интересе со стороны горнодобывающих компаний разработка может быть внедрена в производство в течение нескольких месяцев.

Читайте также
Прямой эфир