Перейти к основному содержанию
Реклама
Прямой эфир
Политика
Владимир Путин провел встречу с президентом Узбекистана в Москве
Мир
В конгрессе потребовали от Байдена объяснения задержкам поставок оружия Израилю
Мир
США в одностороннем порядке на год продлили санкции против Сирии
Армия
Минобороны РФ рассказало о подвигах военнослужащих ВС РФ в зоне СВО
Мир
Президент Северной Македонии признал поражение на президентских выборах
Общество
Росморречфлот сообщил о штатной работе порта Петропавловска-Камчатского после пожара
Мир
Начштаба обороны Британии признал тактические успехи российских сил на Украине
Мир
Президент Узбекистана отметил увеличение товарооборота республики с ЕАЭС
Мир
В ЦПВС сообщили о 10 нарушениях со стороны коалиции США в небе над Сирией
Мир
Олимпийский огонь прибыл из Греции в Марсель на борту парусника Belem
Мир
Украинские СМИ сообщили о взрыве в пригороде Харькова
Армия
Артиллеристы уничтожили расчеты БПЛА ВСУ гаубицами Д-30 в приграничном районе
Мир
Ким Чен Ын поздравил Владимира Путина и россиян с Днем Победы
Общество
В Белгороде прошло торжественное открытие мемориала
Общество
Синоптики предупредили москвичей о холодной погоде и порывистом ветре 9 мая
Мир
Байден заявил о прекращении поставки снарядов Израилю в случае вторжения в Рафах
Мир
Посольство РФ зафиксировало 22 случая осквернения советских памятников в ФРГ с 2023 года

Российские ученые создают самый точный в мире энцефалограф

Атомарный магнитный сенсор совершает переворот в науке о головном мозге
0
Фото: Getty Images/Science Photo Library
Озвучить текст
Выделить главное
вкл
выкл

Московские и петербургские ученые разработали уникальный сенсор для магнитоэнцефалографии — измерения магнитной активности головного мозга. Точность прибора, построенного на его основе, будет в несколько раз выше существующих, а стоимость — в разы ниже. Это сделает его доступным гораздо более широкому кругу пациентов. Магнитоэнцефалография позволяет на самой ранней стадии диагностировать множество заболеваний нервной системы, таких как эпилепсия, болезни Паркинсона и Альцгеймера и др. Кроме того, по мнению экспертов, появление такого прибора сулит прорыв в области знаний о человеческом мозге.

Изучение сигналов электрической активности головного мозга позволяет не только решать медицинские задачи, но и получить бесценную научную информацию о том, как он устроен и какие физические процессы происходят при мыслительной деятельности. Но проблема в том, что эти сигналы чрезвычайно слабы: чтобы их уловить, необходимо сложное и крайне дорогое оборудование. Наиболее точной и перспективной методикой в этой области считается магнитоэнцефалография (МЭГ) — регистрация магнитных полей, порождаемых активностью нервных клеток мозга.

Основа современных магнитоэнцефалографов — сверхчувствительные сенсоры, так называемые сквиды (сверхпроводящие квантовые интерферометры). Они работают в состоянии сверхпроводимости и требуют охлаждения до сверхнизких температур. Для этого их приходится помещать в сосуд Дьюара (что-то вроде большого термоса), содержащий жидкий гелий — самую холодную жидкость из возможных. Оборудование получается очень громоздким и дорогим в эксплуатации. Но главная беда в том, что сквиды невозможно поднести к голове человека ближе чем на 3–4 см — такова толщина стенок сосуда Дьюара. К тому же серьезные помехи в их работу вносит магнитное поле Земли, поэтому измерения приходится проводить в специальной магнитоизолирующей комнате. Тем не менее применение сквидов остается пока наиболее успешным методом неинвазивного (без хирургического вмешательства) изучения мозга. Он позволяет зарегистрировать всплески активности нейронных групп длительностью менее 10 миллисекунд с пространственным разрешением в несколько миллиметров.

Такие системы необходимы для детальной диагностики неврологических заболеваний, планирования нейрохирургического вмешательства, изучения действия фармакологических препаратов. Но из-за сложности и дороговизны подобных установок во всем мире сейчас существует не более 400. Поэтому учеными ряда стран предпринимаются попытки создать более компактную и дешевую МЭГ-систему, основанную на принципах взаимодействия магнитного поля с магнитными моментами атомов. Но для создания сенсоров, основанных на этом принципе, требуются большая научно-исследовательская работа и большой объем сложных математических вычислений. Группа ученых из Высшей школы экономики (ВШЭ) и петербургского Физико-технического института имени Иоффе (ФТИ) совершила настоящий прорыв на этом направлении.

— В ходе разработки атомарного магнитоэнцефалографа нам удалось сконструировать датчики, способные работать в магнитном поле Земли, — рассказал «Известиям» ведущий научный сотрудник лаборатории атомной радиоспектроскопии ФТИ Антон Вершовский. — Это, возможно, позволит отказаться от использования магнитоизолирующей комнаты, что значительно удешевит прибор и его эксплуатацию.

Такой результат позволяет построить компактную МЭГ-систему следующего поколения с качественно новыми возможностями. О внешнем виде будущего прибора рассказал «Известиям» руководитель проекта, директор Центра биоэлектрических интерфейсов ВШЭ Алексей Осадчий.

— Это будет нечто, напоминающее фантастический головной убор профессора из «Назад в будущее», — шлем, утыканный парой сотен сенсоров, похожих на большой сувенирный карандаш. Сенсоры будут располагаться не далее полусантиметра от головы — в несколько раз ближе, чем в существующих системах. Это позволит достичь субмиллиметрового разрешения: мы сможем различать сигналы от участков мозга, находящихся на расстоянии меньше миллиметра друг от друга.

По оценкам исследователей, цену атомарного магнитоэнцефалографа удастся сделать меньше миллиона долларов — это в 5–7 раз дешевле существующих сегодня приборов.

— Появление недорогого магнитоэнцефалографа произведет революцию как в области лечения нейрокогнитивных расстройств, так и в науке, — считает директор Центра нейрокогнитивных исследований при Московском городском психолого-педагогическом университете Татьяна Строганова. — МЭГ-установку смогут позволить себе даже совсем небольшие медицинские и научные учреждения.

Татьяна Строганова не берется предсказать, какие новые результаты будут достигнуты, но кратное увеличение объемов МЭГ-исследований во всем мире, по ее мнению, сделает неизбежным качественный скачок в области знаний человека о своем мозге.

 

Прямой эфир